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Computational Optimizations:
Do it faster!
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SISD CPU (Standard)
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SIMD CPU (MMX,SSE,…)
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STREAM CPU (GPU)
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By using Support Vector Machine or Relevance Vector Machine a new image x is 
assigned to class +1 o –1 according to the following function:

Optimization target

Fast and easily parallelizable
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1 CPU no SWAR

~ 3000 x 1500 x 10^5 x 2 ops 

~ 1000 Giga ops =

~ 5 minutes on 3 GHz CPU

Dot product by SWAR and SMP

Number of features ~ 3000

Number of SV ~ 1500

Number of samples ~ 100000
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2 CPUs with SWAR

~ 3000 x 1500 x 10^5 x 2 ops /2 /4 

~ 125 Giga ops =

~ 0.5 minutes on 3 GHz CPUs
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Assembler built-in
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Assembler hand-made
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ATLAS
ATLAS (AutomaticallyTunedLinearAlgebra Software)

API BLAS (Basic LinearAlgebra Subroutine)
http://math-atlas.sourceforge.net/
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ATLAS download page
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Performance comparison
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The future computing devices
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GPU architecture
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GPU programming
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GPU programming with CUDA
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CPU-GPU mixed programming
1. The idea is to use jointly both the CPU and the GPU (as a math 

coprocessor)
2. GPU’s floating number precision is the same of CPU’s one
3. As example: matrix-matrix multiplication as below:
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CPU-GPU results
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Wavelet:
an optimization approach
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Haar wavelet

Haar wavelet transformation
It codifies differences in the intensity value of 2 adjacent pixels
It enhances structural variations of 3 main directions (O,V,D)

Overcomplete Haar wavelet
As the classical one with increased resolution 
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Original 
image

Overcomplete
Haar

Classical
Haar

Classical vs. overcomplete
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Algorithmic analysis

Classical Haar wavelet
• At each step NxN pixels NxN pixels
• Thus, we must allocate statically N^2 pixels
• At each step ¾ * N^2 pixels are fixed
• So, time cost decreases linearly
• Terminating condition is well defined: 1 pixel left of user 

parameter
• Original image is INTEGER, resulting image is FLOAT
• If original image is not squared we must pad it
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Algorithmic analysis

Overcomplete Haar wavelet
• At each step NxN pixels >NxN pixels
• Thus, we must allocate memory dynamically
• At each step > ¾ * N^2 pixels are fixed
• So, time cost decreases proportionally to the level
• Terminating condition is well defined: 1 pixel left of user 

parameter
• Original image is INTEGER, resulting image is FLOAT
• If original image is not squared we must pad it
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Padding



25

2D Haar
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Extract coefficients
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Parallel implementation of the 2D Discrete Wavelet
Transform on Graphics Processing Units: 

Filter-Bank versus Lifting.

Christian Tenllado, Member, IEEE, Javier Setoain,Manuel Prieto, Member, IEEE,
Luis Pinuel, Member, IEEE, and Francisco Tirado, Senior Member, IEEE

Wavelet on GPU
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