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Abstract. An effective approach to cancer classification based upon gene 
expression monitoring using DNA microarray was introduced by [1]. Here they 
used DNA microarray analysis on primary breast tumours of 78 young patients 
without tumour cells in local lymph nodes at diagnosis, 34 from patients who 
developed distant metastasis within 5 years (poor prognosis group), 44 from 
patients who continued to be disease-free after a period of at least 5 years (good 
prognosis group) and applied a three step supervised classification (based on 
correlation methods) to identify a gene expression signature strongly predictive of 
a short interval to distant metastasis (“poor prognosis” signature). 
We use a Support Vector Machine (SVM) to face the same problem because such 
a method has already done well in cancer classification problems, and we think 
that we could obtain slightly better results. 
In addition we also address the problem of selection of a small subset of genes 
from the initial number of genes (~25000). We use a method of gene selection 
utilising SVM methods based on Recursive Feature Elimination (RFE) instead of 
the feature ranking with correlation method used in [1], because the last method 
doesn’t take into account mutual information between features in the feature 
selection process, and this could impact classification performance [2]. 

 
1 Introduction 
 
Breast cancer is one of the most common malignant tumours affecting women of the U.S. and 
European populations. Hereditary breast cancer, which accounts for less than 10 % of all cases, is 
due mainly to germline mutations in the tumour suppressor genes BRCA1 and BRCA2. Most cases 
of breast cancer occur in sporadic forms, in which the nature of their genetic determinants remain 
elusive[3]. Breast cancer patients with the same stage of disease can have markedly different 
treatment responses and overall outcome. The strongest predictors for metastasis (for example, 
lymph nodes status and histological grade) fail to classify accurately breast tumours according to 
their clinical behaviour. Chemotherapy or hormonal therapy reduces the risk of distant metastasis 
by approximately one-third; however, 70-80 % of patients receiving this treatment would have 
survived without it [1]. Since these therapies use pharmaceutical agents, such as oestrogen 
modulators or cytotoxic drugs, that reach cancer cells through the bloodstream, it is not surprising 
that these treatments frequently have toxic side effects.  
Finally diagnosis of cancer must be accurate in order for the patient to receive the correct treatment 
and so have the best chance of survival. It would be very important to find a strategy to select 



patients who would benefit (or not) from such therapies as chemotherapy, and gene expression 
profiles are revealing a really powerful weapon to face this kind of problems (compare to the 
traditional way of cancer identification based on the location of tumour and its morphological 
appearance ), especially for their ability to subtype disease. All we need now is a classification 
method that can afford to manage a such huge amount of data, because expression datasets contain 
measurements for thousands of genes which proves problematic for many traditional methods. Also 
for this reason we decided to use Support Vector Machine, a supervised machine learning 
technique, that have been shown to perform well in evaluating microarray gene expression [4, 5, 6]. 
SVMs, though, are well suited to working with high dimensional data such as this. In this work a 
systematic and principled method is introduced that analyses microarray expression data from 
thousands of genes. The primary goal is the proper classification of new samples. We do this by 
training the SVM on samples classified by experts, and then testing the SVM on samples it has non 
seen before. 
We also look at the method introduced in [1] to focus the analysis on a smaller subset of genes that 
appear to be the best diagnostic indicators. This amounts to a kind of dimensionality reduction on 
the dataset. If one can identify particular genes that are diagnostic for the classification one is 
trying to make, then there is also hope that some of these genes may be found to be of value in 
further investigations of the disease and in future therapies. For this purpose we use a method of 
gene selection utilising SVM methods based on RFE, because we are confident that it could work 
better than correlation methods[2]  
 
 
2  Materials and methods 
 
 In recent years several methods have been developed for performing gene expression experiments. 
Measurements from these experiments can give expression levels for genes in tissue or cell 
samples. Datasets used for our experiments [11] consist of a relatively small number of tissue 
samples (less than 100) each with expression measurements for thousands of genes. Previous 
methods used in the analysis of similar datasets start with a procedure to extract the most relevant 
features. Most learning techniques do not perform well on datasets where the number of feature is 
large compared to the number of examples. SVMs are believed to be an exception. We are able to 
begin with tests using the full dataset, and systematically reduce the number of features selecting 
those we believe to be the most relevant. To understand our method a familiarity with SVM is 
required, and a brief introduction follows. 
 
2.1   Support Vector Machines 
 
Support Vector Machines are learning machines used in pattern recognition and regression 
estimation problems [7]. They grow up from Statistical Learning Theory (SLT) [7]., which gives 
some useful bounds on the generalization capacity of machines for learning tasks. The SVM 
algorithm constructs a separating hypersurface in the input space. Its way to do that is: 

a) Mapping the input space into a high dimensional features space through some non linear 
mapping chosen a priori (kernel); 
b) Constructing in this features space the Maximal Margin Hyperplane 



Hyperplane are defined by    when training data  :0=+⋅ bxw liyi ,....,1),,( =ix   are separated by 
this hyperplane it happens that  1)( ≥+⋅ byi xw , where 1±=iy  are the labels. It can be shown that 

the margin is w
2 , so finding the hyperplane  which separates data with maximal margin is equal 

to: 

1)(with  
2 minimize

2

≥+⋅ byi ixw

w            (1) 

 
In order to allow for misclassification errors, constraints are relaxed to 0,1)( ≥−≥+⋅ iii by ξξxw .  
(1) becomes then: 
 

ii

i

by

C

ξ

ξ

−≥+⋅

⋅+ ∑
1)(with  

2 minimize
2

ixw

w          (2) 

The dual formulation of (2) reduces to : 

∑
∑ ∑

≤≤=

−

Cy

yy

iii

jijii

αα

ααα

0  ,0with  

),(
2
1  maximize ji xx     (3) 

This formulation, where example vectors are present only in dot products, makes  quite 
simple the execution of point a) because of a theorem by Mercer [7]. It gives an easy way to 
compute dot products in feature spaces, where vectors in input space are non-linearly mapped by a 
function )(xφ . By using a suitable function K such that ),()()( jiji K xxxx =⋅φφ we do not need to 
calculate each singular mapping )(xφ . If instead of controlling the overall training error one wants 
to control the trade-off between false positive and false negative, it is possible to modify the primal 
in the following way: 
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where  give different costs to false-positive and false-negative errors. −+ CC   and 
We use an SVM software implemented by ourselves. In order to verify the reliability of our software 
we tested it (before of using it in this specific problem of breast cancer classification) using gene 
expression data from [4]. In this case the goal of using SVM was to functionally classify genes 
based on their expressions (we used expression data from 2467 genes of the budding yeast 



Saccharomyces Cerevisiae measured in 79 different DNA microarray hybridisation experiments). 
Our results are comparable with the results obtained in [4]. 
 
2.2  Feature Selection 
 
Classical gene selection methods select the genes that individually classify best the training data. 
These methods include correlation methods. Evaluating how well an individual feature contributes 
to the separation (e.g. “poor patients” vs. “good patient”) can produce a simple feature (gene) 
ranking. Various correlation coefficients are used as ranking criteria. For instance the coefficient 
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What characterize feature ranking with correlation methods is the implicit orthogonality 
assumptions that are made. Each coefficient  is computed with information about a single feature 
and does not take into account mutual information between features. Several authors have 
suggested using the change in objective function when one feature is removed as a ranking criterion 
[9]. For classification problems, the ideal objective function is the expected value of the error, that 
is the error rate computed on an infinite number of examples. For the purpose of training this ideal 
objective is replaced by a cost function J computed on training examples only. Hence the idea is to 
compute the change in the cost function DJ(i) caused by removing a given feature or, equivalently, 
bringing its weight to zero. The OBD algorithm [10] approximates DJ(i) by expanding J in Taylor 
series to second order. At the optimum of J, the first order term can be neglected yielding: 
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2.2.1 Recursive Feature Elimination 
 
A good feature-ranking criterion is not necessarily a good feature subset ranking criterion. The 
criteria DJ(i) or  estimate the effect of removing one feature at a time on the objective function. 
They become very suboptimal when it comes to removing several features at a time, which is 
necessary to obtain a small feature subset. This problem can be overcome by using the following 
iterative procedure that is called RFE: 

2
iw

1) Train the classifier (optimise the weights  respect to J); iw
2) Compute the feature with smallest ranking criterion; 
3 Remove the feature with smallest ranking criterion. 

For computational reasons it may be more efficient to remove several features at a time at the 
expense of possible classification performance degradation. 



It’s relevant to be noted that RFE has no effect on correlation methods since the ranking criterion is 
computed with information about a single feature; so as gene selection we utilize an SVM method 
based on RFE, that should take into account mutual information between genes in the gene 
selection process, and this could impact classification performance. 
Since a gene selection utilising SVM method based on RFE was already used in [2] and they 
obtained good results compared to classical correlation methods, we also decide to use such a 
method.  
 
 
3.1 Data Set 
 
The data set we used in this work can be found at [11]. We used the gene expression data from 78 
primary sporadic breast cancers: 34 from patients who developed distant metastasis within 5 years, 
44 from patients who continued to be disease-free after a period of at least 5 years. All “sporadic” 
patients were lymph nodes negative, and under 55 years of age at diagnosis. From each patient 5 µg 
total RNA was isolated from snap frozen tumours material and used to derive complementary RNA 
(cRNA). A reference cRNA pool was made by pooling equal amounts of cRNA from each of 
sporadic carcinomas. Two hybridisation were carried out for each tumour using a fluorescent dye 
reversal technique on microarray containing approximately 25000 genes. The 78 sporadic lymph 
node negative patients were selected specifically to search for a prognostic signature in their 
expression profiles [1]. 
 
 
3 Results 
 
The data consisted of 78 training samples and 19 test samples. Each sample was a vector 
corresponding to ~ 25000 genes, but approximately 5000 genes significantly regulated1 were 
selected from the 25000 genes on the microarray.  
First we performed a simple pre-processing step: we normalized the data by their standard 
deviation.  Then we used the SVM-RFE method, as explained in Section 2.2.1. We eliminated 50 
genes at a time until we reached a number of genes equal to ~ 150 genes; then we continued by 
eliminating one gene at a time and by monitoring the classifier’s performance as the number of 
gene decreased. In order to monitoring the classifier’s performance we used the following 
procedure: 
for a given number of features, we began by choosing a kernel and tune the SVM parameters in 
order to achieve the best performance on a leave-one-out cross–validation tests using the training 
dataset. In this way one tests all the examples of the training data and measures the errors over the 
total number of training examples. Then we tested the SVM on the 19 test samples, by using the 
best parameters achieved by the leave-one-out procedure. 
 
 
 
 
We obtained the following result (Table 1.): 
                                                 
1 It means that such genes had at least a two-fold difference with a P=value smaller than 0.01 in more than 3 tumours. 
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30 0/34 0/44 1/12 1/7 0,5 1,1 RBF 
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                     Table 1: Results obtained with “our method” compared to the results obtained in [1]. 
 
Using the SVM-RFE method together with an SVM classifier, we obtained better results than [1] in 
the Leave-one-out procedure, and similar results in the test set (it’s very difficult to compare the 
performance of the two classifiers because the statistic is really poor; hence it would be really 
interesting to repeat the experiment with an higher statistic). 
Anyway the important result is that we were able to classify with only 11 genes (while in [1] they 
used 70 genes); this is really important because it can allow further investigations on these genes in 
order to understand the molecular nature of the problem. 
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